
1

Supplementary Material
Generating large labeled data sets for laparoscopic image processing tasks using unpaired

image-to-image translation

I. ARCHITECTURE

Our framework builds on the MUNIT framework. Fig. 1 shows how the cycle consistency works in the original
MUNIT framework. Fig. 2 explains how latent codes are reconstructed. An overview of all used symbols and
formulas, as well as the difference between MUNIT and our framework can be found in Table I.

Note: In the article, we describe the encoders EA and EB and say that they encode an image to style and content.
Here, we slightly change that nomenclature and split each of the two encoders into style and content encoders, i.e.
EA is split up into EsA and EcA (and EB into EsB and EcB). This is done to be able to describe the processes
in more detail here while keeping the original article concise.

BA

C

SB

ca
cb'

EsA

EcB

GBa b' b

sr

DBSA

GA

sa
EcA

Fig. 1: Cycle consistency in the MUNIT framework. An image a drawn from A is encoded to a style code sa and
content code ca by the style encoder EsA and content encoder EcA, respectively. The content code is then translated
to B using a randomly drawn style vector sr, resulting in a translated image b′. The image is then re-encoded to
the content again, and finally the original image is reconstructed using the style sa which was previously extracted.
The Mean Absolute Error is used to force the reconstruction to correspond to the originally drawn image a. At the
same time, a discriminator DB attempts to distinguish the translation result from original images drawn from B.
The whole process is repeated in the opposite direction for an image drawn from B. The cycle consistency, together
with the discriminators, is responsible for the ability of the networks to learn unpaired image-to-image translations.
By injecting different random style vectors, MUNIT enables multi-modal translation. Our implementation uses no
style in A but is otherwise the same (please compare with Fig. 2 in the original article). The cycle consistency is
also described in Table I in the ”Cycle consistency” row.



2

BA

C

SB

a

EsB

ca
GB

b'
EcA

sr

BA

C

SB

a

EcB

ca
GB

b'
EcA

sr

Fig. 2: Latent code reconstruction in the MUNIT framework. Top: Content code reconstruction. First, an image a
is encoded to a content code ca. This is then translated to an image b′ using a random style vector sr. The content
code reconstruction states that re-encoding this translated image with EcB should yield the original content code
ca. Bottom: Style code reconstruction. Again, an image a is encoded to a content code ca and translated to an
image b′ using a random style code sr. The style code reconstruction states that re-encoding this translated image
with EsB should yield the original style code sr. Both reconstructions are also run in the same way in the opposite
direction for images drawn from B. These reconstruction losses ensure the correct extraction of styles and content
from images, since the networks are forced to use the latent codes in image translation and then extract them again
from the translated images. Our framework uses the same method, except that we do not have style reconstruction
in A (as there is no style).



3

TABLE I: Overview of symbols and formulas and how they differ between MUNIT and our work. Note that the
main difference is that we do not have a style in A. Also, we have the additional MS-SSIM loss acting on the
image brightness. For reconstruction losses, the mean absolute error (MAE) is used. Style vectors sa and sb can
be extracted from images using the encoders or, alternatively, sampled randomly (sr). The overall loss is computed
by adding all losses together.

MUNIT Ours Comment

A A First image domain. In our case, these are renderings of a simulated
laparoscopic scene.

B B Second image domain. In our case, these are laparoscopic images from
Cholec80.

a, b a, b Input images drawn from A and B respectively.

ca = EcA(a)
cb = EcB(b)

ca = EcA(a)
cb = EcB(b)

Content encoders EcA and EcB encode images into latent content codes ca
and cb

sa = EsA(a)
sb = EsB(b)

sb = EsB(b) Style encoders extract style codes from images. We have no style in A, so
we have no encoder EsA.

b′ = GB(ca, sb)
a′ = GA(cb, sa)

b′ = GB(ca, sb)
a′ = GA(cb)

Generator networks generate images given content and style codes

DA

DB

DA

DB

Discriminators. DA learns to differentiate between images a drawn from A
and images a′ generated by GA. DB works analogously. (GAN-Loss)

a ≈ GA(EcB(b
′), sa)

b ≈ GB(EcA(a
′), sb)

a ≈ GA(EcB(b
′))

b ≈ GB(EcA(a
′), sb)

Cycle consistency (MAE-Loss)

a ≈ GA(ca, sa)
b ≈ GB(cb, sb)

a ≈ GA(ca)
b ≈ GB(cb, sb)

Same domain image reconstruction (MAE-Loss)

cb ≈ EcA(GA(cb, sr))
ca ≈ EcB(GB(ca, sr))

cb ≈ EcA(GA(cb))
ca ≈ EcB(GB(ca, sr))

Content reconstruction, using random style vectors sr . (MAE-Loss)

sr ≈ EsA(GA(cb, sr))
sr ≈ EsB(GB(ca, sr))

sr ≈ EsB(GB(ca, sr)) Style reconstruction (MAE-Loss)

µ(a′) ≈ µ(b)
µ(b′) ≈ µ(a)

Brightness consistency during translation. µ(x) calculates the brightness of
the image x (average of red, green and blue channels for every pixel).
Enforced by the multi-scale structural similarity loss (MS-SSIM-Loss).



4

II. FURTHER RESULTS

After training the translation networks, either the style from real images or random style vectors can be used
during translation from A to B. In Fig. 3, we show some results using both real and random style vectors. Fig. 4
shows further samples of the final image translation process where we use random style vectors.

b0 b1 b2 b3

a b′0 b′1 b′2 b′3

Fig. 3: Difference between using real styles and random styles during translation. Here, the
styles from various images (top row, b0 to b3) are used to translate input image a to
various result images (center row, b′0 to b′3). While b′0 and b′1 show decent results, b′2 and b′3
have clear artifacts. These can be attributed to the fact that the content in the
corresponding style images differs too much from the content in the input image a: b2
shows little liver surface and lots of fat tissue and a large portion of b3 shows only the
tool. Similar issues can arise when using random styles (bottom row), but we have found
empirically that this is less likely to happen. In this work, we chose to only use random
styles in translation, since choosing good style images from data sets B – in which the
viewpoint and image content varies a lot – is far from trivial.



5

Fig. 4: Translation results with random style vectors. Each input image (left column) is translated with four, randomly
drawn style vectors. Input as well as output images are 452×256 pixels in size. Sometimes, the translation networks
use very similar textures for fat and gallbladder tissues, which is likely due to the fact that these are often also hard
to distinguish in real images. During translation, image structure is preserved for all images, independent of image
content and camera viewpoint. The MS-SSIM loss keeps the networks from adding more structures, limiting the
freedom the networks have to make the result images look more realistic. Adding more detail to the input images
(connective tissues, deformation) would likely enhance realism in the output. Since the ultimate goal of the project
was to keep the manual workload to a minimum, we refrained from doing so.


